Abstract
Engineering machines and components are proneto structural failures during their service time due to certaintechnical reasons and also due to some unforeseencircumstances. The technical breakdowns sometime lead tohigh economic imbalance and can also be fatal to life andproperty. Predicting the failure and evaluating the breakagecharacteristics of engineering components are crucial indetermining the life of the component and also increasetheir maintenance and safety in daily life. This research study deals with the modelling andnumerical simulations of an aluminium alloy specimen in3D stress-state and thereby predicting the fatigue failure ofthe material subjected to external cyclic loadings. Topredict the failure of a component, a specimen with aninduced crack can be evaluated through cyclic loadingprocess. It is based on the fact that the presence of a crackstends to modify the stresses present locally on thecomponent that the elastic deformation and the stressesattributed with them are totally insufficient for the designagainst fracture. It is based on the assumption that thespecimen undergoes complete fracture when the crackreaches its critical size even though the stress at the criticalcrack tip is much lower than the yield stress of thecomponent. The critical size of the crack is based on theapplication of the load and the number of load cycles itundergoes.The main aim of this research is to present andvalidate the numerical method for the study of theinfluence of cracks present in the engineering components.Finite element method was applied for numericalsimulation. In this study the tension, torsion, combined
 tension-torsion and fatigue loads was applied. Theexperimental testing data of mechanical properties wasused in numerical simulation as input data. This researchstudy investigates the three-dimensional stress-strain stateand fatigue prediction of D16T aluminium alloy which ispredominantly used in the aerospace and automobileindustries for their high strength-to-weight ratio and muchbetter physical properties. The different specimen modelsare then analysed and the most efficient one was selectedfor the preliminary experimental tests.
Highlights
IntroductionEngineering machines and components are prone to structural failures during their service time due to certain technical reasons
The Finite Element Model was created using physics-based meshing techniques and the meshing was increased in the areas of major concentration
The shape of the finite elements used in this simulation was tetrahedral shaped elements with a mid – node capability to increase the accuracy of the solution
Summary
Engineering machines and components are prone to structural failures during their service time due to certain technical reasons. The unfortunate failures are often due to some flawed engineering manufacturing techniques or even due to material failure [1]. Predicting the failure and evaluating the breakage characteristics of engineering components are crucial in determining the life of the component and increase their maintenance and safety in daily life. The fundamental necessity is to analyse these structural failures with a hope of obtaining a certain set of results which might be helpful in the improvements of the structural integrity of the components. The analysing and predictions of material failures can be attained through experimental and numerical simulations in tandem
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.