Abstract

A biomechanical model of the human stomach is proposed, that is based on detailed biological data of the structure and function of the organ. The process of electromechanical conjugation and the spread of the electromechanical wave along the stomach wall were analyzed numerically. Results revealed patterns of stress-strain distribution in the organ. Thus the fundus, the body and the antrum of the organ always experience biaxial stress-strain states, while the cardia and the pylorus undergo uniaxial loading. The circular smooth muscle layer produced greater total forces throughout in comparison to the outer longitudinal smooth muscle layer. The body of the organ along the lesser curvature and the cardia-fundus areas were overstressed compare to other regions. Although the theoretical results resemble qualitatively patterns of electrical and mechanical activity observed in vivo and in vitro there is currently no affirmative experimental evidence to provide a detailed quantitative comparison of the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.