Abstract

Abstract This paper has confirmed the conclusions of the previous paper that the stress softening (Mullins effect) of a black-loaded vulcanizate is similar in magnitude to the stress softening of a gum rubber if the two vulcanizates are stretched initially to the same stress. The initial stress used in the present work was 180 kg/cm2, which is very near to the breaking stress of these vulcanizates. The similarity of the normalized stress-strain curves for all the vulcanizates, both gum and loaded with 60 phr of different types of black, suggests that the main difference between the stress-strain characteristics of a filled and a pure gum rubber, after the initial stressing cycle, can be accounted for by the strain amplification factor X. The more reinforcing blacks possess the higher X factors, i.e., they stiffen the rubber more than, for example, a fine thermal black. It is concluded that the black is acting mainly in a stiffening capacity due to the hydrodynamic effects of the degenerate carbon black networks. For sulfur crosslinked pure gum vulcanizates, in which the crosslinks are polysulfidic, the stress softening is partly associated with the breakage of polysulfide linkages. These reform in the extended condition and produce a real permanent set, but the major stress softening is attributed to the incomplete recovery of the crosslinked network to its initial random state due to network junctions or similar associations being displaced in a nonaffine way during extension. For example, junctions at the ends of chains which become fully extended at relatively low extensions will be displaced in this way. Thus when the rubber is subsequently strained, the network is already in a preferred disposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.