Abstract

In the trough silicon via (TSV) structure for 3-dimentional integration (3DI), large thermal-mechanical stress acts in the BEOL layer caused by the mismatch in thermal expansion coefficient (CTE) of the TSV materials. The resulting high-stress region is thought to be the critical point for the initiation of the cracking or the de-lamination that affects the mechanical reliability. In this study, the stress of multi-stacked thin Si wafers composed of copper TSV and copper/low-k BEOL structure was analyzed by the finite element method (FEM), aiming to reduce the stress of LSI devices of 3D-IC. The results of sensitivity analysis using design of experiment (DOE) indicated that the thickness of the adhesive layer is the key factor for the structural integration of TSV design. It is suggested that the wafer-on-a-wafer (WOW) process has reliability about 1.5 to 1.75 times higher in the TSV structure with BEOL interconnects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.