Abstract
To determine the tolerance of Salix gracilistyla to repetitive alternate flooding and drought, we measured leaf stomatal conductance, pre-dawn water potential, osmotic adjustment, and biomass production under greenhouse conditions. We used a control and nine crossed treatments (F1-D1–F3-D3) in which we combined 1-, 2-, or 3-week floodings (F) and droughts (D). Leaf stomatal conductance was lowest in 3 weeks of flooding or drought when the preceding event (flood or drought) was also of a 3-week duration. Leaf pre-dawn water potential was reduced in 3 weeks of drought when preceded by 2 or 3 weeks of flooding. Cuttings had slight osmotic adjustments in repetitions of long floodings and droughts. During longer durations of drought in crossed experiments, plants had low root and shoot mass, few hypertrophic lenticels, and reduced leaf mass; when flooding duration increased in crossed experiments, root mass was reduced, there were more hypertrophic lenticels, and the leaf area was reduced. Cuttings achieved stress tolerance by inhibition of transpiration, osmotic adjustment, reduction of transpiration area, and development of hypertrophic lenticels. Stress tolerance was weak when repetitive 2- or 3-week floodings were combined with 3-week droughts. The duration of flooding and drought periods under which S. gracilistyla achieves stress tolerance may be critical in determining distributions along riverbanks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.