Abstract

The purpose of this study was to determine stress envelopes for an intact tibiofemoral joint and to study how they vary with knee loading, external-internal rotation, varus-valgus rotation and cartilage degradation (osteoarthritis) using the finite element method. The envelopes were presented in terms of knee flexion angle. The maximum von Mises stress for all tibiofemoral joint components increased with increasing the axial compressive force magnitude. Menisci exhibited the highest magnitude of maximum von Mises stress as compared to the femoral and tibial cartilages. In a range of flexion angles between 0° and 100°, the medial meniscus exhibited the highest maximum von Mises stress than the lateral meniscus and the stress in medial meniscus tended to increase with increasing the flexion angle. External-internal and varus-valgus rotations changed the stress distribution: higher stress on lateral compartment but lower stress on medial compartment, and conversely. The internal rotation provided more extreme effect than the external rotation. For the knee osteoarthritis, cartilage degradation (early stage) caused maximum von Mises stress to increase on the intact menisci revealing that knee osteoarthritis could also cause meniscal tear. The late osteoarthritis caused the maximum von Mises stress to increase on the calcified cartilage and subchondral bone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call