Abstract

Carnocyclin A (CCLA) is an antimicrobial peptide produced by Carnobacterium maltaromaticum ATCC PTA-5313, which can be used to control the growth of Listeria monocytogenes in ready-to-eat meat products. The aim of this research was to elucidate the cellular responses of L. monocytogenes 08-5923 exposed to a sublethal dose of CCLA. Microarray, quantitative reverse transcription-PCR, tandem mass spectrometry, and electron microscopy were used to investigate the alteration in gene expression, protein production, and morphological changes in cells of Listeria following treatment with CCLA. The genes involved in metabolism (baiE, trn, and pykA), cell wall synthesis (murZ and dacB2), and cell division (clpE and divIVA) were upregulated following a 15-min exposure to CCLA as a result of stress responses. Genes involved in cell division, cell wall synthesis, flagellar synthesis, and metabolism were downregulated after 4 h as a result of adaptation. Analysis of total soluble proteins confirmed the downregulation of pykA and gnd after 4 h of exposure to CCLA. The absence of flagella was observed in L. monocytogenes following 30 h of exposure to CCLA. A sublethal dose of CCLA induced adaptation in L. monocytogenes 08-5923 by inhibition of expression of genes and proteins critical for synthesis of cell wall structures and maintaining metabolic functions. Both the mannose- and cellobiose-specific phosphotransferase systems could be targets for CCLA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call