Abstract

The stress in the startup of uniaxial elongational flow until steady state, followed by stress relaxation, has been measured for a narrow molar mass distribution polystyrene melt with a molecular weight of 145kg∕mol. The experiments are conducted on a filament stretching rheometer, where a closed loop control of the midfilament diameter ensures controlled uniaxial extension. The closed loop control algorithm is extended to apply to the stress relaxation part of the experiment. It ensures a constant midfilament diameter, by controlling the motion of the end plates. By dividing the measured stress with the theoretically predicted stress from the Doi and Edwards model during relaxation, the stretch factors corresponding to each imposed stretch rate are obtained. These stretch factors converge to a unique envelope and eventually converge to unity for long times for all measured elongational rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.