Abstract
The stress propagation in a concentrated attractive colloidal suspension under shear is studied using numerical simulations. The spatial correlations of the intercolloidal stress field are studied and an inertia-like tensor is defined in order to characterize the anisotropic nature of the stress field. It is shown that the colloids remain in a liquid order, the intercolloidal stress is strongly anisotropic. A transition under flow is observed: during a transient regime at low deformation, the stress propagates along the compression direction of the shear, whereas at larger deformations, the stress is organized into layers parallel to the (flow, vorticity) plane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.