Abstract

We present a new approach to the modelling of stress propagation in static granular media, focussing on the conical sandpile constructed from a point source. We view the medium as consisting of cohesionless hard particles held up by static frictional forces; these are subject to microscopic indeterminacy which corresponds macroscopically to the fact that the equations of stress continuity are incomplete -- no strain variable can be defined. We propose that in general the continuity equations should be closed by means of a constitutive relation (or relations) between different components of the (mesoscopically averaged) stress tensor. The primary constitutive relation relates radial and vertical shear and normal stresses (in two dimensions, this is all one needs). We argue that the constitutive relation(s) should be local, and should encode the construction history of the pile: this history determines the organization of the grains at a mesoscopic scale, and thereby the local relationship between stresses. To the accuracy of published experiments, the pattern of stresses beneath a pile shows a scaling between piles of different heights (RSF scaling) which severely limits the form the constitutive relation can take ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.