Abstract

In this work, the stress-point approach, which was developed to address tension instability and improve accuracy in Smoothed Particle Hydrodynamics (SPH) methods, is further extended and applied for one-dimensional (1-D) problems. Details of the implementation of the stress-point method are also given. A stability analysis reveals a reduction in the critical time step by a factor of 1/√2 when the stress points are located at the extremes of the SPH particle. An elementary damage law is also introduced into the 1-D formulation. Application to a 1-D impact problem indicates far less oscillation in the pressure at the interface for coarse meshes than with the standard SPH formulation. Damage predictions and backface velocity histories for a bar appear to be quite reasonable as well. In general, applications to elastic and inelastic 1-D problems are very encouraging. The stress-point approach produces stable and accurate results. © 1997 by John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.