Abstract
ABSTRACTRaman spectroscopy is a powerful and versatile technique for stress measurements in complex stacks of thin crystalline layers at macroscopic and microscopic scales. Using such a technique we show that thick SiGe layers epitaxially grown using graded buffer method are fully relaxed (>95%) at a macroscopic scale but exhibit a small strain modulation at a microscopic scale. For the first time we report the results of Raman micro-mapping of stress distribution in SGOI wafers produced by Smart Cut™ technology. We conclude that Smart Cut™ is a unique method to manufacture the next generation of engineered wafers that can combine strained and/or relaxed SiGe alloys, Si and Ge films, while keeping their initial strain properties at both scales. It is important to develop Raman spectroscopy tool for in-line process control in fabrication of strained Silicon On Insulator (sSOI) wafers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.