Abstract

Real sharp-edted surface and subsurface flaws detected in a gas pipeline body are modeled by surface semi-elliptical mathematical cracks (cuts) in a closed cylindrical shell. A relationship is proposed that relates the geometrical dimensions of the flaws to the crack aspect ratio. Based on the line spring model, the problem of stress state and boundary equilibrium conditions of a closed cylindrical shell with a surface semi-elliptical crack is reduced to a system of singular integral equations. An algorithm was developed for computational solution of the problem, and numerical analysis was made for the dependence of stress intensity factors on loading conditions and geometrical parameters of shell and crack. For a shell subjected to internal pressure and weakened by a surface longitudinal semi-elliptical crack, a closed approximation formula is proposed that interrelates pressure level, shell/crack dimensions, and material mechanical properties in boundary equilibrium conditions. The maximal error value is indicated for the results obtained using this formula.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call