Abstract

Stress intensity factors (SIFs) were obtained for an oblique crack under normal and shear traction and remote extension loads. The oblique crack was modeled as the pseudodislocation. The stress field due to tractions was solved by the Flamant solution. The SIR of Mode I and Mode II ( K Iand K II) were then obtained. Finite element analysis was performed with ABAQUS and compared with the analytical solutions. The analytical solutions were in good agreement with the results of FEM. From investigating SIFs and their ranges, the following results were obtained. The growth rate of an oblique edge crack decreased due to the reduction in the SIF ranges. The crack driving force depended on the obliquity, the normal traction and the ratio of crack to traction length. The peak value of shear traction was found as a key parameter to accelerate the crack growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call