Abstract

This paper looks at stress intensity factors of cracks in resistance spot welded joints. Stress intensity factors have been used in the past to predict fatigue crack propagation life of resistance spot welds. However, the stress intensity factors from all previous work was based on assumed initial notch cracks at the nugget, parallel to the sheets. Physical evidence shows, however, that fatigue cracks in spot welds propagate through the thickness of the sheets rather than through the nugget. In this work, stress intensity factors of assumed notch cracks and through thickness cracks in tensile shear (TS) and modified coach peel (MCP) specimens were determined by the finite element method. The finite element results from the assumed notch cracks were compared with the results in the literature and were found to be in agreement with the results from Zhang’s equations [Int. J. Fract. 88 (1997) 167]. The stress intensity factors of assumed notch cracks were found to be different from those of through thickness cracks. To date, no analytic equations for stress intensity factors of through thickness cracks in spot welds have been published. In the current work, simple equations are proposed to estimate the K I and K II values of through thickness cracks in TS and MCP specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.