Abstract

Fatigue crack growth from countersunk fastener holes loaded in remote tensile loading was studied using the transparent polymer PMMA. A single edge corner crack at the bottom of the plate and a single internal surface crack at the sharp intersection between the bore and the countersink were induced in the PMMA specimens by pre-cracking. The specimens were then fatigue tested under constant amplitude remote tensile loading and the ‘back-calculation’ method was used to determine stress intensity factors at several crack front locations. When variations in fatigue crack closure were taken into account, the experimental stress intensity factors agreed well with the computational results at selected crack fronts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call