Abstract

At first, a hybrid boundary element method used for three-dimensional linear elastic fracture analysis is established on the basis of the first and the second kind of boundary integral equations. Then the concerned basic theories and numerical approaches including the discretization of boundary integral equations, the divisions of different boundary elements, and the procedures for the calculations of singular and hypersingular integrals are presented in detail. Finally, the stress intensity factors of surface cracks in finite thickness plates and cylindrical pressure vessels are computed by the proposed method. The numerical results show that the hybrid boundary element method has very high accuracy for the analysis of surface crack.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.