Abstract
AbstractIn order to assess the structural integrity of tubular members or pipes containing circumferential through‐wall cracks, their stress intensity factor solutions are required. While stress intensity factors for tension and bending are available, few solutions exist for the case of torsion, even though these components may also be subjected to torque. In this paper, the finite element method is used to compute the stress intensity factors for this geometry under tension and torsion. Shell elements are employed to compute the results for thin shells by the means of the displacement extrapolation technique. The computed results indicate that the available analytical solution for torsional loading, which is based on shallow shell theory, is nonconservative for long cracks in thin shells. Shallow shell theory is in general not applicable to long cracks, and the present work is therefore able to provide solutions for a wider range of crack lengths than what is currently available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.