Abstract

This paper investigates the edge crack problem for a coating/substrate system with a functionally graded interfacial zone under the condition of antiplane deformation. With the interfacial zone being modeled by a nonhomogeneous interlayer having the continuously varying shear modulus between the dissimilar, homogeneous phases of the coated medium, the coating is assumed to contain an edge crack at an arbitrary angle to the interfacial zone. The Fourier integral transform method is used in conjunction with the coordinate transformations of basic field variables. Formulation of the proposed crack problem is then reduced to solving a singular integral equation with a generalized Cauchy kernel. The mode III stress intensity factors are defined and evaluated in terms of the solution to the integral equation. In the numerical results, the values of the stress intensity factors are plotted, illustrating the effects of the crack orientation angle for various material and geometric combinations of the coating/substrate system with the graded interfacial zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.