Abstract
The problem of a crack along the interface of an elliptical elastic inclusion embedded in an infinite plate subjected to uniform stresses at infinity is analyzed by the body force method. The crack tip stress intensity factors are calculated for various inclusion geometries and material combinations. Based on numerical results, the effect of the inclusion geometry on the stress intensity factors is investigated. It is found that for small interface cracks the stress intensity factors are mainly determined by the stresses, occurring at the crack center point before the crack initiation, and interface curvature radius alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.