Abstract

The stress intensity factors (SIFs) for through-transverse crack in the China Railway Track System (CRTS II) slab track system under vehicle dynamic load are evaluated in this paper. A coupled dynamic model of a half-vehicle and the slab track is presented in which the half-vehicle is treated as a 18-degree-of-freedom multi-body system. The slab track is modeled as two continuous Bernoulli–Euler beams supported by a series of elastic rectangle plates on a viscoelastic foundation. The model is applied to calculate the vertical and lateral dynamic wheel–rail forces. A three-dimensional finite element model of the slab track system is then established in which the through-transverse crack at the bottom of concrete base is created by using extended finite element method (XFEM). The wheel–rail forces obtained by the vehicle-track dynamics calculation are utilized as the inputs to finite element model, and then the values of dynamic SIFs at the crack-tip are extracted from the XFEM solution by domain based interaction integral approach. The influences of subgrade modulus, crack length, crack angle, friction coefficient between cracked surfaces, and friction coefficient between faces of concrete base and subgrade on dynamic SIFs are investigated in detail. The analysis indicates that the subgrade modulus, crack length and crack angle have great effects on dynamic SIFs at the crack-tip, while both of the friction coefficients have negligible influences on variations of dynamic SIFs. Also the statistical characteristics of varying SIFs due to random wheel–rail forces are studied and results reveal that the distributions of dynamic SIFs follow an approximately Gaussian distribution with different mean values and standard deviations. The numerical results obtained are very useful in the maintenance of the slab track system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.