Abstract

ObjectiveThis work used 3D finite element analysis (FEA) to analyze and directly compare the stress intensity factor (SIF) and stress distribution at the crack tip of identical cracked tooth models restored with different materials and crown parameters. MethodsA 3D model of the cracked tooth was generated. Then, we applied 25 restorative models, including three parameters (shoulder height, width, and degree of polymerization), five restorative materials (GC, IPS, LU, ZC, VE), and two combinations of types of cement (RMGIC and GIC). An occlusal load of 800N was applied to the spherical part along the longitudinal axis. The stress distribution of the preparation and the SIF of the crack tip was analyzed. ResultsThe crack tip SIF was minimal for a shoulder height offset of 0.8 mm (P = 0.032), a shoulder width of 0.6 mm (P = 0.045), a crown material of ZC (P < 2e-16), and a cement material of RMGIC (P < 0.05), respectively. In contrast, the effect of different polymerization degrees on SIF was insignificant (P = 0.95). ConclusionOur results suggest that the selection of a larger modulus of elasticity (MOE) material for the crown, the preparation of a smaller shoulder width within a safe range, a reasonable increase in the crown length, and the selection of adhesive materials with high fracture toughness are favorable methods to prevent further crack extension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call