Abstract
RIA-simulating experiments for high-burnup PWR fuels have been performed in the NSRR, and the stress intensity factor K I at the tip of cladding incipient crack has been evaluated in order to investigate its validity as a PCMI failure threshold under RIA conditions. An incipient crack depth was determined by observation of metallographs. The maximum hydride-rim thickness in the cladding of the test fuel rod was regarded as the incipient crack depth in each test case. Hoop stress in the cladding periphery during the pulse power transient was calculated by the RANNS code. K I was calculated based on crack depth and hoop stress. According to the RANNS calculation, PCMI failure cases can be divided into two groups: failure in the elastic phase and failure in the plastic phase. In the former case, elastic deformation was predominant around the incipient crack at failure time. K I is available onlyin this case. In the latter, plastic deformation was predominant around the incipient crack at failure time. Failure in the elastic phase never occurred when K I was less than 17 MPam1/2. For failure in the plastic phase, the plastic hoop strain of the cladding periphery at failure time clearly showed a tendency to decrease with incipient crack depth. The combination of K I, for failure in theelastic phase, and plastic hoop strain at failure, for failure in the plastic phase, can be an effective index of PCMI failure under RIA conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.