Abstract

Alumina-calcium hexaluminate refractories experience crack development under severe conditions, leading to a significant reduction in mechanical strength. The external finite element method and Paris' law were employed to investigate the effects of external load and in-situ crack length on stress intensity factor. Fatigue life and crack propagation process of refractories were simulated for varying CAx contents under Model I failure. The findings revealed a linear correlation between the stress intensity factor and external load for a fixed in-situ crack length (a≤16 mm). The ultimate strength of alumina-calcium hexaluminate refractories is inversely proportional to the in-situ crack length. The material's microstructure significantly influences the ultimate strength of refractories, whereas the crack propagation ratio at the interface-to-the aggregate level strongly affects fatigue life. Refractories with a CAx content of 29.78% exhibit the longest fatigue life, attributed to the favorable formation of CA6/CA2 and the highest interface-to-aggregate crack propagation ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.