Abstract

The benefits of producing functionally graded geopolymer in terms of their modified stress intensity factor and fracture toughness are discussed in the present paper. Pre-notched functionally graded geopolymer beams were fabricated by two different fly ash-based geopolymer mixtures. The load was applied parallel to the functionally graded region; two different structures were evaluated by changing the position of the notch. The obtained results indicated that the crack nucleation and growth depend on the interaction between stress intensity factor and fracture toughness. According to the notch position, a crack experience upward or downward variations of properties. When the crack is located in the mixture with the lowest toughness, the variation of properties is called upward and vice versa. A crack facing an upward fracture toughness region is arrested, when the applied stress is equal to the weakest strength of the constituent materials. On the other hand, the fracture toughness of a crack facing a downward fracture toughness gradient is more than that facing an upward one, without any subsequent arresting. It was shown that the position of the notch, and experiencing of downward or upward gradient in mechanical properties mainly determine the final flexural strength of the specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.