Abstract

The Virginia lines of chickens have been selected for low (LWS) or high (HWS) juvenile body weight and have different severities of anorexia and obesity, respectively. The LWS that are exposed to stressors at hatch are refractory to neuropeptide Y (NPY)-induced food intake and the objective of the present study was to determine the underlying mechanisms. Chicks were exposed to a stressor (-20°C for 6minutes and 22°C and delayed access to food for 24hours) after hatching and the hypothalamic nuclei, including the lateral hypothalamus (LH), paraventricular nucleus (PVN), ventromedial hypothalamus (VMH) and arcuate nucleus (ARC), were collected 5days later. In LWS but not HWS, stress exposure up-regulated corticotrophin-releasing factor (CRF), CRF receptor subtypes 1 and 2 (CRFR1 and CRFR2, respectively), melanocortin receptor 4 and urocortin 3 in the PVN, as well as CRFR2 mRNA in the VMH and ARC. In LWS, stress exposure was also associated with greater NPY and NPY receptor subtype 5 mRNA in the ARC and PVN, respectively, as well as decreased agouti-related peptide mRNA in the ARC. In HWS, stress exposure was associated with increased CRFR1 and decreased cocaine- and amphetamine-regulated transcript in the ARC and PVN, respectively. Refractoriness of the food intake response to NPY in LWS may thus result from the over-riding anorexigenic tone in the PVN associated with CRF signalling. Indeed, the orexigenic effect of NPY was restored when LWS were injected with a CRF receptor antagonist, astressin, before stress exposure. The results of the present study provide insights into the molecular basis of eating disorders and suggest that CRF signalling in the PVN may exacerbate the anorexic phenotype in the presence of environmental stressors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.