Abstract

AbstractHakone volcano, located at the northern tip of the Izu‐Mariana volcanic arc, Japan, has a large caldera structure containing numerous volcanic hot springs. Earthquake swarms have occurred repeatedly within the caldera. The largest seismic swarm since the commencement of modern seismic observations (in 1968) occurred in 2001. We investigated the anisotropic structure of Hakone volcano based on S wave splitting analysis and found spatiotemporal changes in the splitting parameters accompanying the seismic swarm activity. Depth‐dependent anisotropic structures are clearly observed. A highly anisotropic layer with a thickness of ~1.5 km is located beneath the Koziri (KZR) and Kozukayama (KZY) stations. The anisotropic intensity in the region reaches a maximum of 6–7% at a depth of 1 km and decreases markedly to less than 1% at a depth of 2 km. The anisotropic intensity beneath Komagatake station (KOM) decreases gradually from a maximum of 6% at the surface to 0% at a depth of 5 km but is still greater than 2.5% at a depth of 3 km. At KZY, the anisotropic intensity along a travel path of which the back azimuth was the south decreased noticeably after the 2001 seismic swarm activity. During the swarm activity, tilt meters and GPS recorded the crustal deformation. The observed decrease in anisotropic intensity is presumed to be caused by the closing of microcracks by stress changes accompanying crustal deformation near the travel path.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.