Abstract

This paper reviews an ultraweak luminescent response of selected biological systems (lower and higher plants, insects and spermatozoa) to certain kinds of detrimental mechanical, temperature, chemical and photochemical stress and to lethal factors. The enhancing effect of white light and formaldehyde on the ultraweak luminescence of yeast and spermatozoa cells is described for the first time. An increase in the percentage of long wavelengths (lambda > 600 nm) with an increase in reaction time, and a significant influence of the suspending medium on the ultraweak luminescence, were observed. The vitality and motility of bull spermatozoa and the vitality of yeast cells were drastically decreased by treatment with white light, water, formaldehyde and iron-ions. Successive irradiation of intact bull spermatozoa cells with white light caused an increase in the intensity of delayed luminescence. An attempt has been undertaken to find stochastic models of non-stationary photon emission. The quasi-relaxation descending stage of non-stationary processes can be modeled as the Integrated Moving Average process IMA (0, 1, 1), and memory and transfer functions can describe the degree of perturbation in the yeast Saccharomyces cerevisiae. The relation of the ultraweak luminescence response to perturbations of homeostasis is discussed in the framework of biochemical and physical models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call