Abstract

In situ laboratory-based and in situ synchrotron X-ray diffraction techniques were employed to study quantitatively the strain-induced austenite-to-martensite (A–M) transformation in thermally cycled (TC) superelastic NiTi alloys. The propagation of the A–M interfaces and the evolution of the microstructure were traced during uniaxial tensile loading. It was shown that the TC material exhibits localized transformation via the propagation of transformation bands. The amount of the martensite phase depends approximately linearly on the applied strain. Analysis of the broadening of the austenite diffraction lines indicates the presence of highly deformed austenite grains within the transformation bands. Analysis of the austenite diffraction-line shifts indicates that the overall lattice strain in the (retained) austenite in the transformation bands differs from that of the austenite in the adjacent untransformed regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call