Abstract

Over the past decade, the certified power conversion efficiency of perovskite solar cells (PSCs) has increased to 26.1%. However, phase instability originating from lattice strains, has limited their commercialization. Strains will inevitably be generated during the PSC fabrication and service process due to the “soft lattice” nature of halide perovskites. In particular, flexible PSCs are subjected to not only mechanical tensile and compressive loads, but also suffer from thermal stresses. In this study, strain-induced changes in the phase stability and the corresponding optoelectronic properties of CsPbI3−xBrx (CsPbI3, CsPbBr3, and CsPbI2Br) systems under tensile and compressive stresses were investigated using first-principles calculations. The results showed that compressive stresses reduce the bandgap value and increase the light absorption coefficient; thus, the optoelectronic performance is improved, whereas the light absorption coefficient decreases regardless of how the bandgap changes under tensile stresses. Moreover, under the same stress, the tensile strain value was twice that of the compressive strain, and the critical value of the transition from the cubic to tetragonal phase was lower, indicating that phase stability was worse under tensile stresses. Therefore, during the fabrication of PSCs, the tensile stress state should be adjusted to the compressive stress state, which is favorable for enhancing PSCs photovoltaic performance and phase stability. The results not only provide direct evidence of tensile and compressive strains influencing the phase stability and optoelectronic property changes in halide perovskites, but also highlight lattice-strain tailoring for the composition design, process optimization, and interface engineering of efficient and stable PSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call