Abstract

Neuronal protein synthesis is severely depressed following stress such as heat-shock, hypoxia, and hypoglycemia. Following reversible cerebral ischemia, protein synthesis is transiently inhibited in ischemia-resistant areas, but persistently depressed in vulnerable brain regions. Eukaryotic initiation factor 2 (eIF-2) activity, that is, the formation of the ternary complex eIF-2.GTP.initiator 35S-Met-tRNA, a rate-limiting step in the initiation of cellular protein synthesis, was studied in the rat brain during and following 15 min of transient global cerebral ischemia. At 30 min and 1 hr of reperfusion, a general decrease of eIF-2 activity by approximately 50% was seen in the postmitochondrial supernatant (PMS). In the relatively resistant neocortex and CA3 region of the hippocampus, the eIF-2 activity returns to control levels at 6 hr of reperfusion, but remains depressed in the vulnerable striatum and the CA1 region. Similarly, the activity of the guanine nucleotide exchange factor (GEF), which catalyzes the exchange of GTP for GDP bound to eIF-2, a crucial step for the continued formation of the ternary complex, is transiently reduced in neocortex but persistently depressed in striatum. The postischemic decrease in eIF-2 activity is further attenuated by agarose-bound alkaline phosphatase, and mixing experiments revealed that a vanadate-sensitive phosphatase may be responsible for the depression. Addition of partially purified GEF to PMS from postischemic neocortex restored eIF-2 activity to control levels. We conclude that ischemia alters the balance between phosphorylation and dephosphorylation reactions, leading to an inhibition of GEF and a depression of ternary complex formation.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.