Abstract

This paper reports on a study of the stress-induced grain growth phenomenon in the presence of second-phase particles and solutes segregated at grain boundaries (GBs) during high-temperature deformation of an ultra-fine grained (UFG) Al alloy synthesized via the consolidation of mechanically milled powders. Our results show that grain growth was essentially inhibited during annealing at 673 K (400 °C) in the absence of an externally applied stress, whereas in contrast, grain growth was enhanced by a factor of approximately 2.7 during extrusion at 673 K (400 °C). These results suggest that significant grain growth during hot extrusion was attributable to the externally applied stresses stemming from the state of stress imposed during extrusion and that the externally applied stresses can overcome the resistance forces generated by second-phase particles and solutes segregated at GBs. The mechanisms underlying stress-induced grain growth were identified as GB migration and grain rotation, which were accompanied by dynamic recovery and possible geometric dynamic recrystallization, while discontinuous dynamic recrystallization did not appear to be operative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.