Abstract

The phage shock protein (psp) operon of Escherichia coli is strongly induced in response to heat, ethanol, osmotic shock, and infection by filamentous bacteriophages. The operon contains at least four genes--pspA, pspB, pspC, and pspE--and is regulated at the transcriptional level. We report here that psp expression is controlled by a network of positive and negative regulatory factors and that transcription in response to all inducing agents is directed by the sigma-factor sigma 54. Negative regulation is mediated by both PspA and the sigma 32-dependent heat shock proteins. The PspB and PspC proteins cooperatively activate expression, possibly by antagonizing the PspA-controlled repression. The strength of this activation is determined primarily by the concentration of PspC, whereas PspB enhances but is not absolutely essential for PspC-dependent expression. PspC is predicted to contain a leucine zipper, a motif responsible for the dimerization of many eukaryotic transcriptional activators. PspB and PspC, though not necessary for psp expression during heat shock, are required for the strong psp response to phage infection, osmotic shock, and ethanol treatment. The psp operon thus represents a third category of transcriptional control mechanisms, in addition to the sigma 32- and sigma E-dependent systems, for genes induced by heat and other stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.