Abstract

Stress-induced catecholamine impairs the formation of granulation tissue acting directly in fibroblast activity; however, the mechanism by which high levels of catecholamines alter the granulation tissue formation is still unclear. Thus, the aim of this study was to investigate how high levels of epinephrine compromise the activity of murine dermal fibroblasts. Dermal fibroblasts isolated from the skin of neonatal Swiss mice were preincubated with α- or β-adrenoceptor antagonists. Thereafter, cells were exposed to physiologically elevated levels of epinephrine or epinephrine plus α- or β-adrenoceptor antagonists, and fibroblast activity was evaluated. The blockade of β1- and β2-adrenoceptors reversed the increase in fibroblast proliferation, ERK 1/2 phosphorylation, myofibroblastic differentiation and the reduction of collagen deposition induced by epinephrine. In addition, the blockade of β3-adrenoceptors reversed the increase in fibroblast proliferation and nitric oxide synthesis as well as the reduction of fibroblast migration, AKT phosphorylation and active matrix metalloproteinase-2 expression induced by epinephrine. However, the blockade of α1- and α2-adrenoceptors did not alter the effects of epinephrine on the activity of murine dermal fibroblasts. In conclusion, high levels of epinephrine directly compromise the activity of neonatal mouse skin fibroblasts through the activation of β1-, β2- and β3-adrenoceptors, but not through α1- and α2-adrenoceptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.