Abstract

Mechanical training via cyclic loading and unloading was widely used in NiMnGa shape memory alloys (SMAs) to create single or double variant states for reducing the resistance to variant reorientation and thus achieving a maximum shape memory strain. In this work, an effort was made to reveal the deformation mechanism of a polycrystalline Ni52Mn27Ga17Co4 high-temperature SMAs consisting of non-modulated (NM) martensite with uniform orientation and surrounding γ precipitates. The NM martensite microstructure was characterized as a self-accommodated hierarchical twinned-structure prior to deformation. Based on the interrupted in-situ EBSD measurements and phase-field simulations, it was demonstrated that the compressive loading resulted in the thickening of the stress-favored variants with the <001>NM direction perpendicular to compression axis at different dimensional scales. The path consisted of two subsequent processes–first detwinning of the nano-lamellae within one micro-variant through inter-lamellae boundary motion, and then reorientation of micro-variants through inter-plate boundary motion. The Schmid factor and preferred orientation of nano-lamellae (or strain accommodation) dominated the entire detwinning/reorientation process of NM martensite. As a result, the hierarchically twinned microstructure almost evolved into a single-variant state with the disappearance of packet boundaries. The ductile γ phase with network structure possessed more excellent strain-accommodated ability to the macroscopic deformation, hence significantly enhancing the mechanical properties including the ultimate compressive strength and elongation of NiMnGa SMAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call