Abstract

The influence of acoustic stress on postprandial gastrointestinal motility, gastric emptying, and plasma gastrin, pancreatic polypeptide, motilin, and somatostatin was evaluated in conscious dogs. Six dogs were equipped with strain-gauge transducers and were exposed from 1–3 h after the meal to prerecorded music (80–90 dB broad frequency noise), which produced a significant (p ≤ 0.05) lengthening of the gastric (31.2%) and jejunal (37.0%) postprandial pattern. In 4 other dogs with gastric cannula, a 2-h session of acoustic stress beginning just after eating a radiolabeled standard meal induced a slowing of gastric emptying of both liquid (45.7%) and solid (47.1%) phases of the test meal when measured 0.5 h after feeding. In contrast, when measured 2 h after feeding, similar values of gastric emptying of liquids and solids were observed in stressed and control animals. Compared with controls, the postprandial increases of plasma gastrin and pancreatic polypeptide levels were significantly enhanced in stressed animals and occurred early (15 min after the meal). Although postprandial decrease in plasma motilin was unchanged by acoustic stress, the rise in plasma somatostatin level was significantly (p ≤ 0.05) prolonged in stressed dogs. These results indicate that acoustic stress affects gastric and intestinal postprandial motility in dogs, delaying the recovery of the migrating motor complex pattern, inducing a transient slowing of gastric emptying, and enhancing the feeding-induced release of gastrin, pancreatic polypeptide, and somatostatin. Such hormonal changes might be due to a direct effect of stress rather than being the consequence of acoustic stress-induced slowing of gastric emptying.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.