Abstract

Constitutive heterochromatin comprising the centromeric and telomeric parts of chromosomes includes DNA marked by high levels of methylation associated with histones modified by repressive marks. These epigenetic modifications silence transcription and ensure stable inheritance of this inert state. Although environmental cues can alter epigenetic marks and lead to modulation of the transcription of genes located in euchromatic parts of the chromosomes, there is no evidence that external stimuli can globally destabilize silencing of constitutive heterochromatin. We have found that heterochromatin-associated silencing in Arabidopsis plants subjected to a particular temperature regime is released in a genome-wide manner. This occurs without alteration of repressive epigenetic modifications and does not involve common epigenetic mechanisms. Such induced release of silencing is mostly transient, and rapid restoration of the silent state occurs without the involvement of factors known to be required for silencing initiation. Thus, our results reveal new regulatory aspects of transcriptional repression in constitutive heterochromatin and open up possibilities to identify the molecular mechanisms involved.

Highlights

  • Chromatin can adopt conformations that were first defined cytologically as condensed heterochromatin and open euchromatin [1]

  • DNA is packaged into chromatin that is present in two different forms named euchromatin and heterochromatin

  • The silent state associated with heterochromatin correlates with the presence of distinctive repressive epigenetic modifications

Read more

Summary

Introduction

Chromatin can adopt conformations that were first defined cytologically as condensed heterochromatin and open euchromatin [1]. Subsequent genomic studies characterized euchromatin as gene rich and transcriptionally active, and heterochromatin as inert matter, mostly holding transcriptionally silent repeats, remnants of transposons and DNA sequences without clearly defined functions. It is, remarkable that a very large proportion of genomic DNA is packaged into heterochromatin, often overwhelming the amounts of DNA associated with euchromatin. The maintenance of compact and inert heterochromatin seems to be correlated with the propagation of particular covalent modifications of DNA and histones. These modifications, termed epigenetic marks, are propagated together with replicating DNA. DNA methylation levels are lower and H3 gains acetylation and methylation at lysine 4 (H3K4me) losing H3K9me [11,12]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.