Abstract

One mechanism of ciprofloxacin resistance is attributed to chromosomal DNA-encoded efflux pumps such as the MepA and NorB proteins. The goal of this research is to find a way to bypass Staphylococcus aureus' efflux pumps. Because of its high membrane permeability and low association with NorB and MepA efflux proteins, a liposome-encapsulating antibiotic is one of the promising, cost-effective drug carriers and coating mechanisms for overcoming active transport of methicillin-resistantS. aureus (MRSA)multidrug-resistant efflux protein . The calculated "Log Perm RRCK" membrane permeability values of 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC) ciprofloxacin liposome-encapsulated (CFL) showed a lower negative value of - 4,652cm/s and greater membrane permeability than ciprofloxacin free (CPF). The results of RT-qPCR showed that cationic liposomes containing ciprofloxacin in liposome-encapsulated form (CFL) improved CPF antibacterial activity and affinity for negatively charged bacterial cell surface membrane in comparison to free drug and liposome, as it overcame several resistance mechanisms and reduced the expression of efflux pumps. Ciprofloxacin liposome-encapsulated (CFL) is therefore more effective than ciprofloxacin alone. Liposomes can be combined with a variety of drugs that interact with bacterial cell efflux pumps to maintain high sustained levels of antibiotics in bacterial cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.