Abstract

SUMMARYStress history plays an important role in controlling the consolidation behavior of soft clays, but few models exist that can provide quantitative estimate of its influence. In this paper, the Gibson–Lo rheological model is used to simulate the coupled processes of drainage and creep of soft soils that takes stress history into account. A hybrid combination of analytical and numerical methods is adopted to solve the governing equations of consolidation with the nonlinear rheological model. The methodology is applied to a saturated soft soil subjected to surface loading. The soil profile is separated into normally consolidated and overconsolidated layers by a boundary that is allowed to move. Comparisons of the model predictions and its simulations are used to evaluate the effects of stress history, model parameters, and loading pattern on consolidation behavior. It is shown that stress history influences the location of the moving boundary, variations of the profiles of excess pore water pressure dissipation, stress and deformation‐based average degrees of consolidation. Parametric studies conducted show that when soil is stiffer, the excess pore water pressure dissipates much more quickly, and thus the soil consolidates much faster especially at the early stages. The results also show that soil viscosity influences the deformation‐based average degree of consolidation at the latter stages. The consolidation process of soil layer under linear loading is shown to lag behind those under instantaneous loading: the longer the loading period is, the smaller the average degrees of consolidation are no matter how they are defined. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.