Abstract

The paper investigates gradient effects, which relate to how highly stressed regions should be dealt with in fatigue design analyses. In particular stress gradients in rolling contact are investigated with a focus on differences in response between full and partial slip conditions. To this end the multiaxial state of stress beneath a wheel–rail contact featuring full or partial slip is quantified using a multiaxial equivalent stress criterion. A comparative study shows that the significant differences in peak interfacial shear stress magnitudes between full and partial slip conditions are significantly reduced when translated to equivalent stress magnitudes. An innovative procedure to quantify the gradient effects by comparing the multiaxial contact stress field to uniaxial conditions is developed and employed. For the studied cases stress gradients beneath the frictional contact were found to be similar to stress gradients outside a uniaxially loaded large plate featuring a small hole with a radius in the order of 0.5–0.7mm. The study concludes that the use of local magnitudes of interfacial shear stress in the analysis of surface initiated rolling contact fatigue under partial slip conditions is conservative. The analysis framework established in the current study can be used to estimate the level of conservativeness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.