Abstract

AbstractSynchrotron radiation has been used in the grazing incidence geometry to determine the stress gradients and stress relaxation in 0.6 μm thick Al uniform films. We have examined both pure Al and Al implanted with 3 at% oxygen. The films were cycled between 23°C and 400°C. The surface of the pure Al films was more highly stressed, on average, than the film as a whole, both in tension and in compression. In contrast, the surface of the oxygen-implanted film was relaxed relative to the average film stress in compression but was more stressed in tension. The larger gradient in stress in the implanted films reduces during subsequent thermal cycling. These differences are attributed to the microstructures of the films. The 0-implanted film develops a small, non-columnar grain structure and forms small AI2O3 particles during annealing. The small grain size allows diffusional relaxation to occur in compression, relieving the stress in areas close to the film surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.