Abstract
When manufacturing parts using material extrusion additive manufacturing and anisotropic polymers, the mechanical properties of a manufactured component are strongly dependent on the print trajectory orientation. We conduct non-planar slicing and optimize the print trajectories to maximize the alignment between the material deposition direction and the stress flow induced by a predefined load case. The trajectory optimization framework considers manufacturability constraints in the form of uniform layer height and line spacing. We demonstrate the method by manufacturing a load bearing mechanical bracket using a 5-axis 3D printer and a liquid crystal polymer material. The failure strength and stiffness of the optimized bracket are improved by a factor of 44 and 6 respectively when compared with conventional printing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.