Abstract

For improving global stability of mining environment reconstructing structure, the stress field evolution law of the structure with the filling height change of low-grade backfill was studied by ADINA finite element analysis code. Three kinds of filling schemes were designed and calculated, in which the filling heights were 2, 4, and 7 m, separately. The results show that there are some rules in the stress field with the increase of the filling height as follows: (1) the maximum value of tension stress of the roof decreases gradually, and stress conditions are improved gradually; (2) the tension stress status in the vertical pillar is transformed into the compressive stress status, and the carrying capacity is improved gradually; however, when the filling height is beyond 2.8 m, the carrying capacity of the vertical pillar grows very slowly, so, there is little significance to continue to fill the low-grade backfill; (3) the bottom pillar suffers the squeezing action from the vertical pillars at first and then the gravity action of the low-grade backfill, and the maximum value of tension stress of the bottom pillar firstly increases and then decreases. Considering the economic factor, security and other factors, the low-grade backfill has the most reasonable height (2.8 m) in the scope of all filling height.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call