Abstract
Reliable extreme lightweight is the pursuit in many high-end manufacturing areas. Aided by additive manufacturing (AM), lattice material has become a promising candidate for lightweight optimization. Configuration of lattice units at the material level and the distribution of lattice units at the structure level are the two main research directions recently. This paper proposes a generative strategy for lattice infilling optimization using organic strut-based lattices. A sphere packing algorithm driven by von Mises stress fields determines the lattice distribution density. Two typical configurations, Voronoi polygons and Delaunay triangles, are adopted to constitute the frames, respectively. Based on finite element analysis, a simplified truss model is utilized to evaluate the lattice distribution in terms of mechanical properties. Optimization parameters, including node number, mapping gradient, and the range of varying circle size, are investigated through the genetic algorithm (GA). Multiple feasible solutions are obtained for further solidification modelling. To avoid the stress concentration, the organic strut-based lattice units are created by the iso-surface modelling method. The effectiveness of the proposed generative approach is illustrated through a classical 3-point bending beam. The stiffness of the optimized structure, verified through experimental testing, has increased 80% over the one using the traditional uniform body center cubic (BCC) lattice distribution.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.