Abstract

In recent years, extensive research efforts have been directed toward pluripotent stem cells, primarily due to their remarkable capacity for pluripotency. This unique attribute empowers these cells to undergo self-renewal and differentiate into various cell types originating from the ectoderm, mesoderm, and endoderm germ layers. The delicate balance and precise regulation of self-renewal and differentiation are essential for the survival and functionality of these cells. Notably, exposure to specific environmental stressors can activate numerous transcription factors, initiating a diverse array of stress response pathways. These pathways play pivotal roles in regulating gene expression and protein synthesis, ultimately aiming to preserve cell survival and maintain cellular functions. Reactive oxygen species, heat shock, hypoxia, osmotic stress, DNA damage, endoplasmic reticulum stress, and mechanical stress are among the examples of such stressors. In this review, we comprehensively discuss the impact of environmental stressors on the growth of embryonic cells. Furthermore, we provide a summary of the distinct stress response pathways triggered when pluripotent stem cells are exposed to different environmental stressors. Additionally, we highlight recent discoveries regarding the role of such stressors in the generation, differentiation, and self-renewal of induced pluripotent stem cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.