Abstract

Tien Shan tectonic belt has experienced intense seismicity and a series of destructive strong earthquakes. However, earthquake triggering effects and faulting interactions in this area are poorly understood. A 3D finite element model of Tien Shan tectonic belt is constructed, to investigate stress evolutions on major faulting zones driven by interseismic tectonic loading and historical strong earthquakes with M≥ 6.0 since 1900. The numerical results show Tien Shan is dominated by nearly N-S compression, with higher tectonic loading rate in southwest Tien Shan. 1906 Manas M7.7 earthquake exerted pronounced Coulomb stress increase on its adjacent faulting zones, especially in the epicenter of 2016 Hutubi M6.0 earthquake. And three large earthquakes with M≥ 8.0, e.g., Chilik M8.3 earthquake in 1889, Kemin M8.0 earthquake in 1911 and Atushi M8.2 earthquake in 1902, increased the Coulomb stress by above 100 kPa in the epicenter of 1991 Keping M6.0 earthquake. While, stress perturbations by other strong earthquakes are limited, with slight Coulomb stress changes in the epicenters of their subsequent earthquakes. Overall, strong earthquakes with M> 7.0 in Tien Shan, induced substantial Coulomb stress changes on the adjacent faulting zones. Stress evolutions on major faults reveal higher stress accumulation in southwest Tien Shan, east KQX fault, west BoA fault, and HMT fault, indicating higher seismic risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call