Abstract
The potential advantages of lithium metal anodes have received widespread attention (highest capacity, lowest reduction potential, etc). However, the poor stability of Li metal / liquid electrolyte interfaces leads to chronic problems, such as dendrite formation and capacity loss. The possible impact of mechanical effects on interface stability and dendrite formation are difficult to probe directly. In this study, stress evolution during lithium plating and stripping was monitored with precise in situ measurements. The data obtained with different film thicknesses made it possible to separate the stresses associated with the lithium metal and the solid electrolyte interphase (SEI). The results show that significant stresses are created in the SEI films. Based on this, a basic model of wrinkling-ratcheting-delamination is also presented. This analysis indicates that plasticity in a growing Li film can enhance surface wrinkling, and thus lead to morphological destabilization of a planar growth front.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.