Abstract

To design large-sized lithium-ion battery modules for the application of electric vehicles and grid-level energy storage, it is of important significance to understand how stress and dimension of a single pouch cell fluctuate during charge/discharge cycles. In this study, stress evolution under the constant-thickness condition and thickness change under the constant-stress condition are measured for in-house fabricated pouch cells, respectively. The results of stress measurements show that the stress increase percentage generally decreases when the charge/discharge current increases, regardless of the value of the initial compressive stress. With the same current density, the stress increase percentage generally increases when the upper cutoff voltage increases. With the same current density and upper cutoff voltage, the stress increase percentage decreases when the initial compressive stress increases. The results of thickness measurements show that the volume expansion percentage generally increases when the current density increases, regardless of the value of the constant compressive stress. With the same current density, the volume expansion percentage generally increases when the upper cutoff voltage increases. With the same current density and upper cutoff voltage, the volume expansion decreases when the constant compressive stress increases. The results provide important insights into the design principles of battery packs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.