Abstract

Spice and medicinal plants grown under water deficiency conditions reveal much higher concentrations of relevant natural products compared with identical plants of the same species cultivated with an ample water supply. For the first time, experimental data related to this well-known phenomenon have been collected and a putative mechanistic concept considering general plant physiological and biochemical aspects is presented. Water shortage induces drought stress-related metabolic responses and, due to stomatal closure, the uptake of CO2 decreases significantly. As a result, the consumption of reduction equivalents (NADPH + H(+)) for CO2 fixation via the Calvin cycle declines considerably, generating a large oxidative stress and an oversupply of reduction equivalents. As a consequence, metabolic processes are shifted towards biosynthetic activities that consume reduction equivalents. Accordingly, the synthesis of reduced compounds, such as isoprenoids, phenols or alkaloids, is enhanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.