Abstract
Stress drop estimates of moderate-magnitude earthquakes in the Umbria–Marche region, in the northern Apennines, exhibit a large scatter. For the two Mw 5.7 and 6.0 main shocks of 26 September 1997 near Colfiorito, several papers resulted in stress drop estimates of 20 MPa, but values as low as 2–3 MPa were proposed as well. Also for the largest aftershocks (Mw > 4), estimates spread from < 1 MPa up to values ten times larger. We have critically revisited methods and data used in the literature. We have specifically faced the trade-off between source and propagation effects, as we believe that it is responsible for a part of the large scatter. To keep this trade-off under control, we have applied a methodology that combines the best fit of both source spectra after Empirical Green’s Function (EGF) deconvolution and observed ground motion spectra, finding that the results of the two different data sets converge independently at the same solution. We have used ground motions observed in the Colfiorito basin, where an accelerograph and a co-located seismological broad-band station recorded three clusters of earthquakes in a broad magnitude interval (1.7 ≤ Mw ≤ 6.0). We have found that the mainshock–aftershock sequences result in stress drops of 2–5 MPa at Mw ≥ 5.6, with an average tendency to decrease at smaller magnitudes where stress drop variability increases. These findings confirm the source scaling recently assessed through Empirical Green’s Function deconvolution for another well-monitored seismic sequence of normal-faulting earthquakes, which struck the city of L’Aquila in the central Apennines in April 2009. The similar scaling law of the two areas suggests common mechanisms of stress release for the shallow normal faults in the Apennines. The propensity of smaller earthquakes to increase in variability, with a tendency toward smaller stress drops, may reflect an effect of fault strength heterogeneities for smaller size ruptures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.